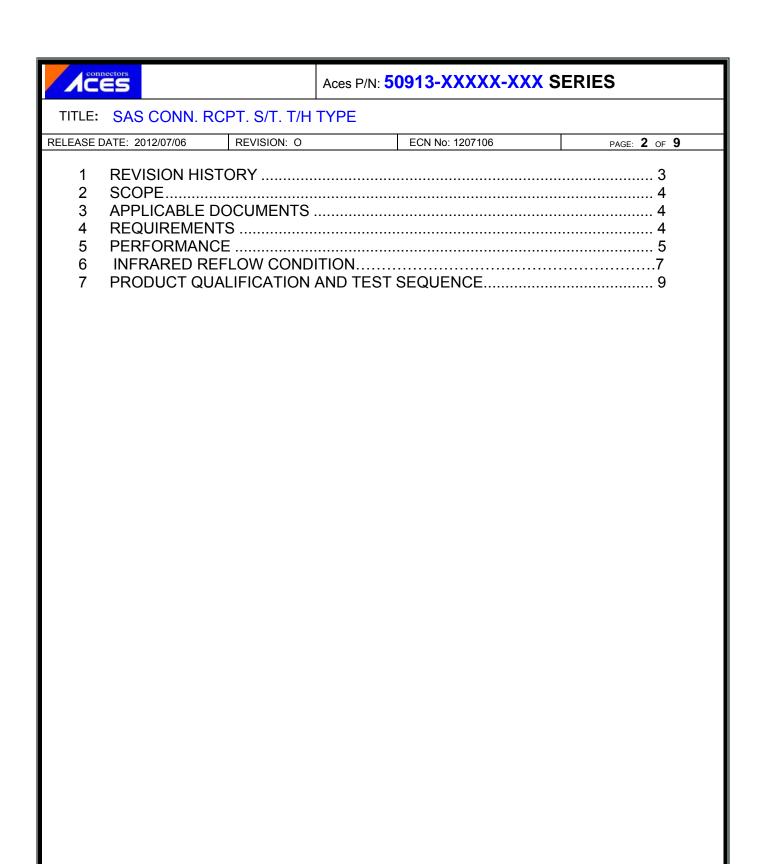


SPECIFICATION

宏致電子股份有限公司

桃園縣中壢市東園路13號


No.13, Dongyuan Rd., Jhongli City,

Taoyuan County 320, Taiwan (R.O.C.)

TEL: +886-3-463-2808 FAX: +886-3-463-1800

SPEC. NO.:	PS-50913-XXXXX-XXX	REVISION:	0
PRODUCT NA	AME: SAS CONN. R	CPT. S/T. T/H TYPE	
PRODUCT NO	5 0913-XXXXX	-XXX	

PREPARED:	CHECKED:	APPROVED:
HUANTY	CARL	JASON
DATE: 2012/07/06	DATE: 2012/07/06	DATE: 2012/07/06

	Rev. ECN # Revision Description Prepared Date 1 ECN-1110023 NEW SPEC HUANTY 2011/10/0	Rev. ECN # Revision Description Prepared Date 1 ECN-1110023 NEW SPEC HUANTY 2011/10/0			T. S/T. T/H TYPE REVISION: O ECN No:	1207106	PA	GE: 3 OF 9
1 ECN-1110023 NEW SPEC HUANTY 2011/10/0	1 ECN-1110023 NEW SPEC HUANTY 2011/10/0	1 ECN-1110023 NEW SPEC HUANTY 2011/10/0	Revisi	on History				
			Rev.				epared	
O ECN-1207106 RELEASE HUANTY 2012/07/1	O ECN-1207106 RELEASE HUANTY 2012/07/0	O ECN-1207106 RELEASE HUANTY 2012/0/A						
			0	ECN-1207106	RELEASE	HU	JANTY	2012/07/0
					+			
					+			
					+			

TITLE: SAS CONN. RCPT. S/T. T/H TYPE

2 SCOPE

This specification covers performance, tests and quality requirements for SAS connector. Refer to ACES P/N: 50913 series

3 APPLICABLE DOCUMENTS

EIA-364: ELECTRONICS INDUSTRIES ASSOCIATION

4 REQUIREMENTS

- 4.1 Design and Construction
 - 4.1.1 Product shall be of design, construction and physical dimensions specified on applicable product drawing.
 - 4.1.2 All materials conform to R.o.H.S. and the standard depends on TQ-WI-140101.
- 4.2 Materials and Finish
 - 4.2.1 Contact: High performance copper alloy (Phosphor Bronze)

Finish: (a) Contact Area: Refer to the drawing.

- (b) Under plate: Refer to the drawing.
- (c) Solder area: Refer to the drawing.
- 4.2.2 Housing: Thermoplastic or Thermoplastic High Temp., UL94V-0
- 4.2.3 Fitting nail: High performance copper alloy

Finish: (a) Contact Area: Refer to the drawing.

(b) Under plate: Refer to the drawing.

- 4.3 Ratings
 - 4.3.1 Voltage: 30 Volts DC (per pin)
 - 4.3.2 Current: 1.5 Amperes (per pin)
 - 4.3.3 Operating Temperature : 0°C to +55°C

Non-Operating Temperature : -40° to +85° to +

TITLE: SAS CONN. RCPT. S/T. T/H TYPE

5 Performance

5.1. Test Requirements and Procedures Summary

ltem	Requirement	Standard					
	Product shall meet requirements of	Visual, dimensional and functional					
Examination of Product	applicable product drawing and	per applicable quality inspection					
	specification.	plan.					
ELECTRICAL							
Item	Requirement	Standard					
Low Level Contact Resistance	30 m Ω Max.(initial)per contact	Mate connectors, measure by dry					
	15 m Ω Max.(after test) Change	circuit, 20mV Max., 100mA					
	allowed	Max.					
		(EIA-364-23)					
		Unmated connectors, apply 500 V DC between adjacent					
Insulation Resistance	1000 M Ω Min.	terminals.					
		(EIA-364-21)					
		1. Set the Time Domain					
		Reflectometer (TDR) pulse in					
1		differential mode with a positive					
		going (V+) and a negative going					
		pulse (V-). Define a reflected					
		differential trace: Vdiff=V+ - V-					
Mated connector		2. With the TDR connected to the					
Differential Impedance	100 Ω ±15%	rise time reference trace, verify an					
		input rise time to 70ps (20%-80%)					
		as practical.					
		Measure and record the					
		maximum and minimum values of					
		the near end connector differential					
		impedance.					
		500V AC Min. at sea level for 1					
Distriction	No discharge, flashover or	minute.					
Dielectric	breakdown.	Test between adjacent contacts of					
Withstanding Voltage	Current leakage: 0.5 m A max.	unmated connectors.					
	9	(EIA-364-20)					
		Mate connector: measure the					
		temperature rise at rated current					
Temperature rise	30° Max. Change allowed	until temperature stable. The					
	_	ambient condition is still air at 25℃					
		(EIA-364-70,METHOD1,CONDITION1)					
MECHANICAL							
Item	Requirement	Standard					
		The sample should be mounted in					
		the tester and fully mated and					
Durahility	500 avalor	unmated the number of cycles					
Durability	500 cycles.	specified at the rate of 25.4 ± 3					
		mm/min, (200 cycles per hour max.					
		(EIA-364-09)					

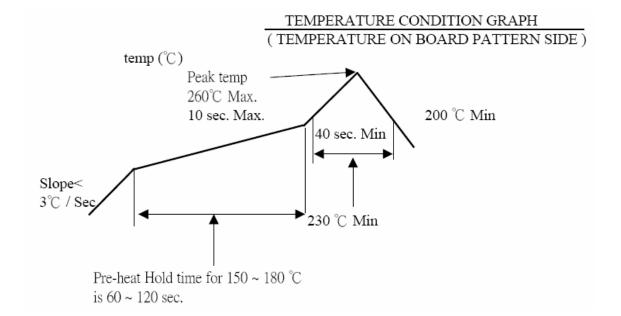
TITLE: SAS CONN. RCPT. S/T. T/H TYPE

RELEASE DATE: 2012/07/06 REVISION: O ECN No: 1207106 PAGE: **6** OF **9**

Item	Requirement	Standard				
Mating / Un-mating Forces	Mating Force: 2.55kgf Max. Un-mating Force: 0.5kgf Min.	Operation Speed: 25.4 ± 3 mm/minute Measure the force required to mate/Un-mate connector. (EIA-364-13)				
Terminal / Housing Retention Force	0.30kgf MIN.	Apply axial pull out force at the speed rate of 25.4 ± 3 mm/minute. On the terminal assembled in the housing.				
Fitting nail / Housing Retention Force	0.20kgf MIN.	Operation Speed: 25.4 ± 3 mm/minute. Measure the contact retention force with Tensile strength tester.				
Vibration	1 μ s Max.	The electrical load condition shall be 100 m A maximum for all contacts. Subject to a simple harmonic motion having amplitude of 0.76mm (1.52mm maximum total excursion) in frequency between the limits of 10 and 55 Hz. The entire frequency range, from 10 to 55 Hz and return to 10 Hz, shall be traversed in approximately 1 minute. This motion shall be applied for 2 hours in each of three mutually perpendicular directions. (EIA-364-28 Condition I)				
Shock (Mechanical)	1 μs Max.	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A)				
	ENVIRONMENTA	L				
Item Requirement Standard						
Resistance to Reflow Soldering Heat	See Product Qualification and Test Sequence Group 9 (Lead Free)	Pre Heat : 150°C ~180°C, 60~120sec. Heat : 230°C Min., 40sec Min. Peak Temp. : 260°C Max, 10sec Max.				

TITLE: SAS CONN. RCPT. S/T. T/H TYPE

Item	Requirement	Standard
Thermal Shock	See Product Qualification and Test Sequence Group 4	Mate module and subject to follow condition for 10 cycles. 1 cycles: -55 +0/-3 °C, 30 minutes +85 +3/-0 °C, 30 minutes (EIA-364-32, test condition I)
Humidity	See Product Qualification and Test Sequence Group 4	Mated Connector 40°C, 90~95% RH, 96 hours. (EIA-364-31,Condition A, Method II)
Temperature life	See Product Qualification and Test Sequence Group 5	Subject mated connectors to temperature life at 85°C for 96 hours. (EIA-364-17, Test condition A)
Salt Spray (Only For Gold Plating)	See Product Qualification and Test Sequence Group 6	Subject mated/unmated connectors to 5% salt-solution concentration, 35°C (I) Gold flash for 8 hours (II) Gold plating 5 u" for 96 hours. (EIA-364-26)
Solder ability	Tin plating: Solder able area shall have minimum of 95% solder coverage. Gold plating: Solder able area shall have minimum of 75% solder coverage	And then into solder bath, Temperature at 245 ±5°C, for 4-5 sec. (EIA-364-52)
Hand Soldering Temperature Resistance	Appearance: No damage	T≧350°C, 3sec at least.


Note. Flowing Mixed Gas shell be conduct by customer request.

TITLE: SAS CONN. RCPT. S/T. T/H TYPE

RELEASE DATE: 2012/07/06 REVISION: O ECN No: 1207106 PAGE: **8** OF **9**

6 INFRARED REFLOW CONDITION

TITLE: SAS CONN. RCPT. S/T. T/H TYPE

7 PRODUCT QUALIFICATION AND TEST SEQUENCE

Test or Examination		Test Group									
		2	3	4	5	6	7	8	9	10	11
		Test Sequence									
Examination of Product				1 . 7	1、6	1 \ 4			1	1	1
Low Level Contact Resistance		1 . 5	1 • 4	2、10	2、9	2 \ 5			3		
Insulation Resistance				3 · 9	3、8						
Dielectric Withstanding Voltage				4 · 8	4 · 7						
Temperature rise	1										
Mating / Unmating Forces		2 · 4									
Durability		3									
Vibration			2								
Shock (Mechanical)			3								
Thermal Shock				5							
Humidity				6							
Temperature life					5						
Salt Spray(Only For Gold Plating)						3					
Solder ability							1				
Mated connector Differential Impedance											2
Terminal / Housing Retention Force								1			
Fitting Nail /Housing Retention Force								2			
Resistance to Soldering Heat									2		
Hand Soldering Temperature Resistance										2	
Sample Size	2	4	4	4	4	4	2	4	4	4	4